

High Plains Permaculture - The Niwot Homestead

2025 Annual Report

We live in a time when the dominant narrative tells us the most important thing we can do is, "Make your voice heard." Missing is the counternarrative, which asks us to listen. What results (it seems to me) is a bunch of people trying to shout over one another louder and louder until all we hear is the din. Until we culturally remember how to listen, it does not matter what exactly we are trying to say.

If we struggle to listen to each other as humans, we have forgotten even more fully how to listen to the wisdom of the natural world. To be able to listen to nature's wisdom, we actually have to put ourselves in a position to hear it. When we buy a loaf of bread at the grocery store, we don't have to listen to the sound of a rototiller shredding ancient tallgrass prairies and displacing burrowing owls to plant the wheat. When we buy factory farmed chicken at the store, we don't have to see or hear or smell the overcrowded chicken warehouse bathed in artificial light. Yes, we can hike, and we can stop and admire a bee on a plant, and we can dip our toes in the river.

But to me, the most potent question we can ask is, what effect is my life actually having on the living world around me? What does it take to sustain me? If it is our right to have clean water, healthy food, and a safe place to live, surely it is our responsibility to ensure that we are living in a way that enables that for all of earth's other creatures. And the only way I feel we can actually answer that question is by being part of the ecosystems that sustain us, so we can see and understand the implications of our actions. When we do, what arises is an overwhelming sense of gratitude at just how much life has been given so that we can be alive, an awe-struck sense of just how much we don't know, and the humility to begin learning from the oldest and wisest teacher we have—mother nature.

We have come a long way with this project, and yet, the questions we are asking will surely be the work of a lifetime. This annual report is an exercise in the art of listening, and reflecting. It is the time when we look back at what has happened throughout this project with an open mind and an open heart. We try to see things as they really are, not as we expect or want them to be. If we come out of this process with more questions than answers, I consider that a great success, because it is the right questions that will guide us into the future. We hope you will join us in taking a moment to reflect.

-Amy Scanes-Wolfe

Our Vision: Community Land Stewardship

Rather than focusing on working within traditional for-profit food economies, which inherently create a strong separation and often financial barrier between consumers, farmers, and ecology, **we are working on creating alternative food systems that operate outside the traditional for-profit economy, empowering people to take food production and ecosystem stewardship into their own hands.**

We are not just asking how to make commodity food systems more ecological, **we are looking at how to use healthy ecologies such as forests, prairies, meadows, and savannahs as models for cultivating food**, positioning ourselves as keystone species who shape but do not dominate the ecosystems we inhabit.

Cultivating a complete bioregional diet of fruits, nuts, seeds, grains, vegetables, meat, eggs, dairy, and medicinal herbs helps us build complete, circular food systems and provides diverse educational opportunities

Mobilizing the community makes it possible to steward diverse, ecological farm systems in a way that would be impossible in a for-profit setting, while also providing exercise, community, healthful food, and immersive education to participants.

Community Mobilization

- 1530 volunteer hours contributed through regular volunteer days
- 38 Sunday volunteer programs & meals served
- 90 person spring tree planting event at Wild View Farm
- Two public Farm to Table Brunch & Open House events serving ~100 attendees total

We were also able to build some **productive community partnerships** and collaborations with various educational organizations including Front Range Community College's Ecological Landscaping class, CU's Climate Action Planning law class, Naropa's Permaculture Design class, and The Five Acre Farm Homeschool Program for middle schoolers.

This year we piloted a Fellowship Program to offer an 8-hour a week education and food trade to 7 individuals eager to learn about homesteading and regenerative living. This proved to be an unsuccessful structure, but offered us many valuable learnings in terms of future structures to support both management and deeper education on our sites.

- Deeper learning experiences that require 7+ hours per week of engagement are challenging for people to embrace on top of full time work. In order to fully show up for deeper and more immersive educational experiences, people need to free up time from regular work schedules. This points us in one (or more) of several directions-offering experiences through existing educational structures like universities, targeting demographics of people who have the ability to work only part time, or offering meaningful exchanges (such as housing trades) that allow people to work less hours in other jobs.
- 7-8 hours per week is insufficient to be able to understand and participate in diverse systems such as the ones we tend; part time offerings such as the 20-25 hour per week (or more) apprenticeships we offered in 2024 were much more effective.
- For better or worse, within the context of our current socioeconomic reality, it is much easier to hold people accountable to responsibilities when you are paying them money than when you have arranged for a trade of an equal value of food.
- We need to develop better structures for integrating people into the more complex operations of the farm systems, and creating structures of support and accountability.

This was the first year that we asked volunteers to commit to a minimum of 8 days per year, and capped our volunteer community to provide a more intimate experience to a dedicated team, rather than a more superficial experience to the wider community. This was a great success; **it is hard to measure by numbers, but anecdotally, the level of cohesion, participation, and shared vision has never been stronger.** We have also embraced an increasingly intergenerational community with more age diversity—especially young children—which feels important to our continued growth.

Reflections From Our Core Community

"One of the huge problems we have with our food systems currently is the lack of connection to our actual food that we're eating. Very rarely do I find people outside of this project who... know where the meat that they ate is coming from or the carrots that they are eating came from, or the process of what it took to prep the soil and land by using animals..." - **Carlee Marincic, 2024 Apprentice & Ongoing Volunteer Member**

"What has been unique about this project to me has just been seeing the life cycle of growing from seed to harvesting to processing and then cooking together as a community. It feels very reciprocal and nurturing in a way that I haven't seen anywhere else before."

-Kiersten Clingersmith, Volunteer Member Since 2022

"I think it's really exciting because every time I come here I learn something new... you can tend the herbs and make herbal medicine, or you can plant, or you can process the grains that are going to be milled to make bread, so there's so much diversity and skills that you can learn... It has really opened my eyes to what is possible on a backyard plot of land and what is possible when you bring people together around food and meals and land tending."

- Anna Flick, Volunteer Member Since 2023

"My life as a whole has changed because I've started to consider on a deeper level the implications of my actions and feel more empowered to use the values based reasoning, not only in agriculture, but in social situations and in the rest of my life."

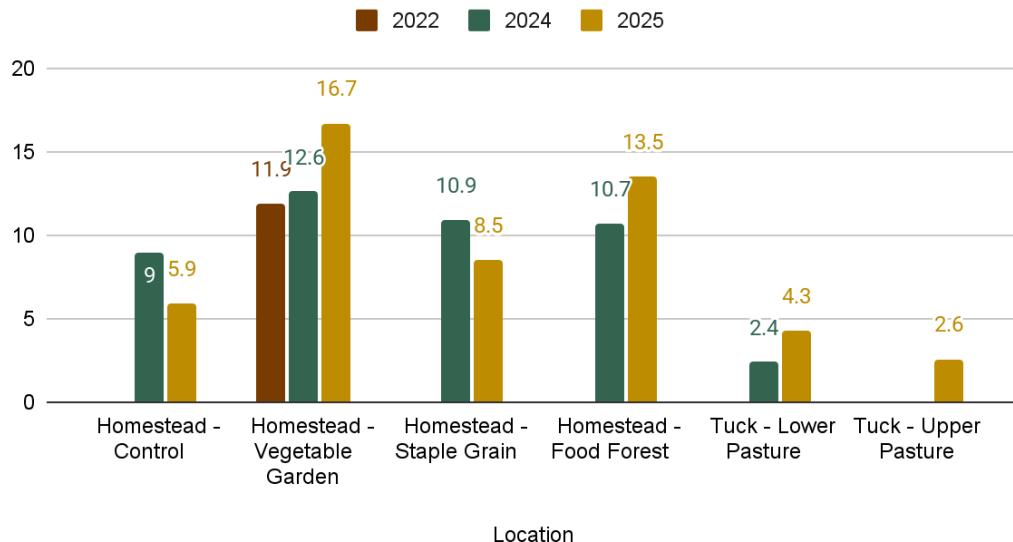
- Gavin Goodsell, 2024 Apprentice & Ongoing Core Team Member

"One of the reasons I'm here is to remember and be retrained in being a keystone species on the planet, like buffalo and beaver are." - **John Reed, 2025 Volunteer Member**

Research: A Glimpse into Land Regeneration

Our research program serves two functions. First, amidst the many moving parts and frenetic pace of the farm season, it gives us a reason to pause, reflect, and direct our attention to the soil, the insects, and the plants that inhabit the farm alongside us. Second, it provides concrete numbers that help us evaluate the impact of our land management strategy on the overall health of the ecosystem in a way we may or may not be able to guess through casual observations alone.

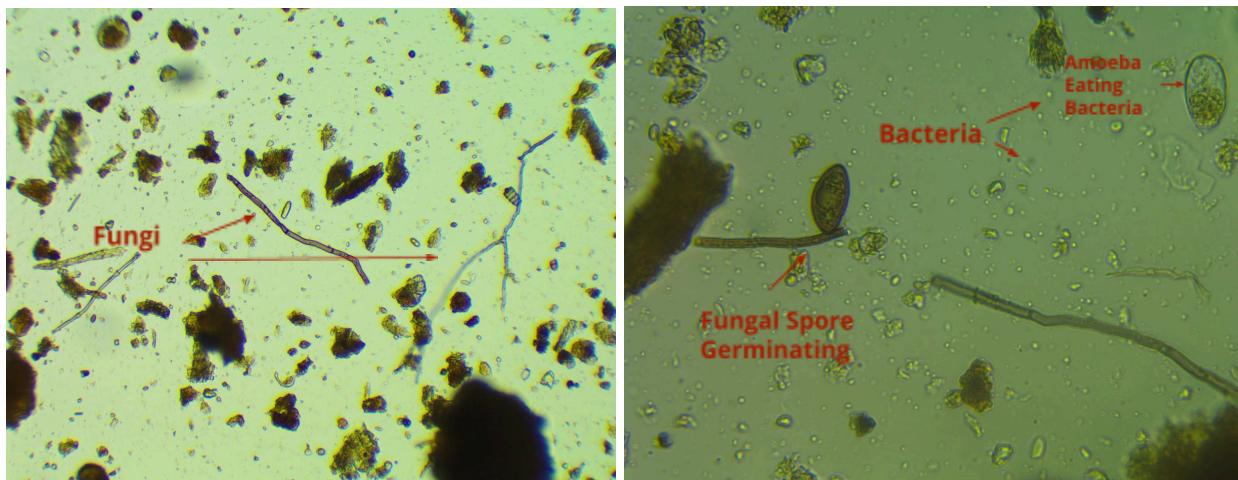
This kind of research is a long game, because our systems hold many moving parts, multiple changes in strategy and input each year, and are subject to daily and seasonal climate fluctuations. This data will be most valuable and conclusive when examined across years or decades. With only two years of data, the most we can really take away from this research is questions and curiosities that can continue to direct our learning and experimentation.


Soils

Soil organic matter represents the organic materials from decaying plants, animals, and animal manures present in the soil. The complex web of life beneath the soil eventually breaks organic matter down into its most stable form, humus, which represents carbon sequestered in the soil. Humus—and all organic matter—supports the ability of the soil to retain water, resist compaction, support life and continued nutrient cycling, sequester carbon, and ultimately feed humans and wildlife. In regional soils that often demonstrate low or depleted soil organic matter due to disturbance and dry conditions, increasing soil organic matter is nearly always the goal for farming and restoration alike.

Yet, as with all living systems, balance is key. While there are no official guidelines on maximum healthy soil organic matter levels (in our reference ecosystems such as tall grass prairie and deciduous forest, levels range from 3-8%), our suspicion is that the higher organic matter levels we are beginning to encounter in some of our systems are leading to nutrient depletion and lock out.

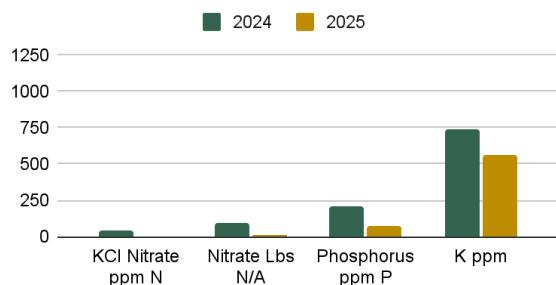
Soil Organic Matter Percentages Over Time

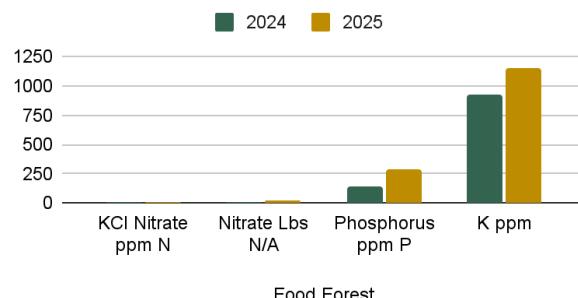

A Glimpse at pH Over Time

pH represents the concentration of H⁺ or OH⁻ ions in the soil at any given time. A higher concentration of H⁺ leads to an acidic soil, and a higher concentration of OH⁻ ions leads to a more basic, or alkaline, soil, in a logarithmic way. Generally, the parent material strongly impacts the pH of the soil, while rain and higher organic matter acidify soils. The pH can help us choose plant communities that are better adapted to our base soil pH. Many short grass prairie species, for example, are adapted to alkaline soils, while some plants like blueberries and others in the Ericaceae family require very acidic soils to thrive. On the other hand, a healthy soil biology can change the pH directly around the root zone of plants, which may explain why some of the fruit trees we cultivate (who generally prefer acidic soils) are nevertheless thriving at a higher pH.

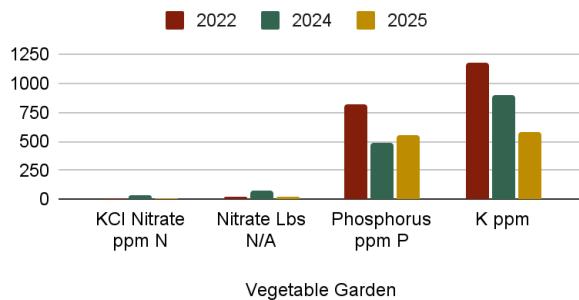
Location	2022	2024	2025
Lawn Control		7.4	7.6
Vegetable Garden	7.9	7.4	7.7
Food Forest		7.6	7.8
Staple Grain Field		6.8	7
Tuck Lower Pasture		8	8.3
Tuck Upper Pasture			8.5

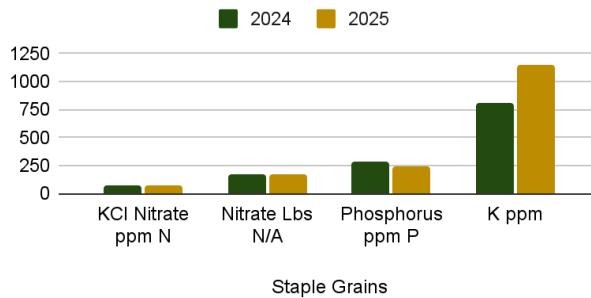
A Glimpse of Compost

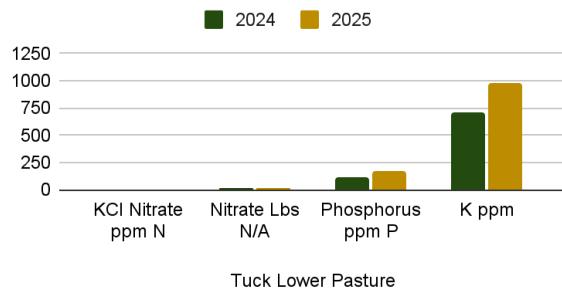

Thank you to Rutger Myers from Ecocycle for providing us with the following images and analysis of our farm compost under a microscope. This analysis revealed a highly fungal compost, with a relatively low proportion of bacteria. This is unsurprising, given that our compost process relies on a high proportion of wood chips, minimal disturbance, and long composting times (1.5-2 years start to finish). While anecdotally many compost producers strive for this balance (fungal compost is more challenging to make and has many attenuating benefits such as soil water retention), it is less well suited to annual vegetable crops, who prefer a higher bacterial compost with more useful nutrient cycling. It gives us pause to reflect on strategies for our compost pile that might better fit its intended use, including decreasing the amount of carbon-heavy material we add relative to the nitrogen (in our case chicken poop), exploring alternative base carbon materials such as straw or shredded leaves that are less woody, and more intentionally watering the pile to accelerate decomposition.


Nutrient Changes Over Time

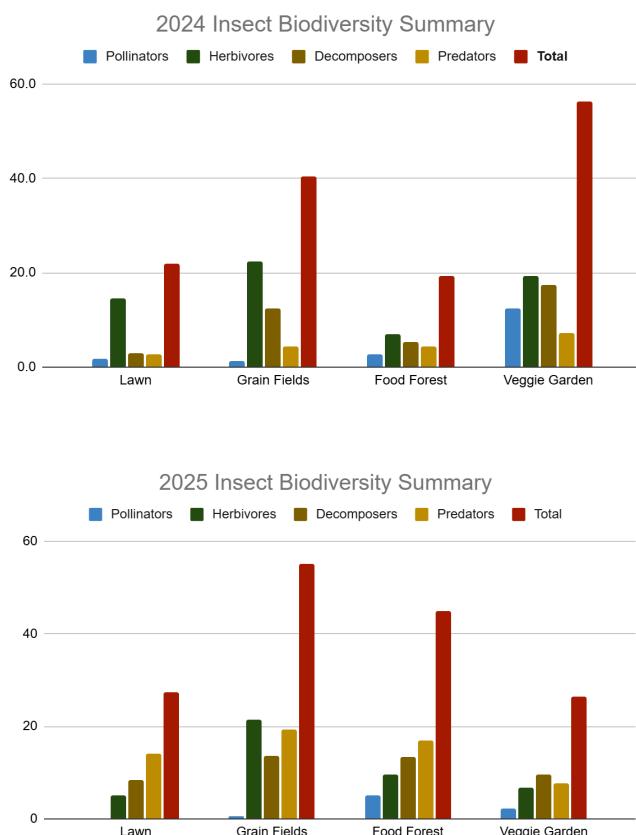
In order to glimpse changes in key nutrients over time on each of our sites, we have chosen to focus on the three macronutrients plants need in greatest quantity and found in most organic and inorganic fertilizers: Nitrogen, Potassium, and Phosphorus. These three nutrients cycle naturally through the decomposition of all manures and plant materials and give us a picture of how effectively our systems are cycling and retaining nutrients relative to their use of them. A healthy ecology would sustain—or slowly build—levels of these nutrients over time. Keep in mind that the absolute numbers of each of these that a healthy soil sustains are quite different, so what is noteworthy in the graphs below is differences in each nutrient over time and differences between the same nutrient in different systems.


Nutrient Changes Lawn Control


Nutrient Changes Forest Garden


Nutrient Changes Vegetable Garden

Nutrient Changes Staple Crop Fields



Nutrient Changes Tuck Lower Pasture

Insect Biodiversity

Insects are a critical indicator of biodiversity both above and below themselves on the food chain, so we can use them as a general indicator of the overall biodiversity of an ecosystem. Rather than trying to identify every single insect species (we are not entomologists!) we look at the functional groups they represent. (This is also a simplification, as many insects fulfill multiple functions in an ecosystem - however, we are choosing to focus on a dominant one).

If, for example, there are lots of predators in a system, we can assume that there are also abundant and diverse prey to support them. So predators are a useful indicator of biodiversity. Decomposers help give us a picture of the availability of organic matter to decompose. Pollinators fulfill a critical ecosystem role, and monitoring them will also help us track the future impact of bringing in honeybees and other environmental changes.

Noteworthy Observations & Trends

The total number of predators in every system increased from 2024-25. Does this suggest an overall increase in the strength and complexity of the food chain?

The overall number of insects in the vegetable garden, including pollinators, decreased significantly, while increasing elsewhere. One difference in management this year was a more proactive removal of wild carrots. Could the absence of this one species alone account for the difference? Or could it be the increasing habit offered by more mature perennial plants in the food forest and grain fields?

The number of decomposers increased in the grain fields and forest garden.

The overall number of pollinators remains low in general but was far lower this year than last year, despite similar quantities of flowering plants overall. What is the cause of this difference? Seasonal weather differences? Smoke? Climatic or environmental shifts?

Tree & Shrub Survival Rates at Wild View Farm

The following data gives us a glimpse (with a large amount of human error) into the survival rates and relative success of different species planted in contour swale systems at our partner project Wild View Farm. We planted a total of four swales in early May. However, only swales 1 and 2 had supplementary irrigation (irrigated roughly 7 times during the season), and survival rates were extremely low in swales 3 and 4, so the data here reflects only that of the upper irrigated swales.

Overall Survival Rate Swales 1 & 2: 65% (based on actual tallied trees dead & alive)

Fruit & Canopy Trees					
Swale #		Apples	Pears	Mulberries	Hackberries
1	Approx # Planted**	8	8	5	16
	Total Tallied	15	3	1	1
	Survival Rate	188%	38%	20%	6%
2	Approx # Planted**	29	29	19	57
	Total Tallied	42	12	3	20
	Survival Rate	145%	41%	16%	35%
Avg Survival Rate		166%*	39%	18%	21%

*Survival rates about 100% present clear evidence of human error in species identification while tallying with volunteers.

Nitrogen Fixers				
Swale #		Black Locust + False Indigo	Honeylocust	Buffaloberry
1	Approx # Planted**	153	21	28
	Total Tallied	84	18	1
	Survival Rate	55%	86%	4%
2	Approx # Planted**	182	75	9
	Total Tallied	93	34	1
	Survival Rate	45%	45%	11%
Avg Survival Rate		50%	66%	7%

**These percentages are based on the starting number of plants, of which only 77% were actually planted. This should be taken just to give a rough idea of relative success of each species, not for actual survival rates.

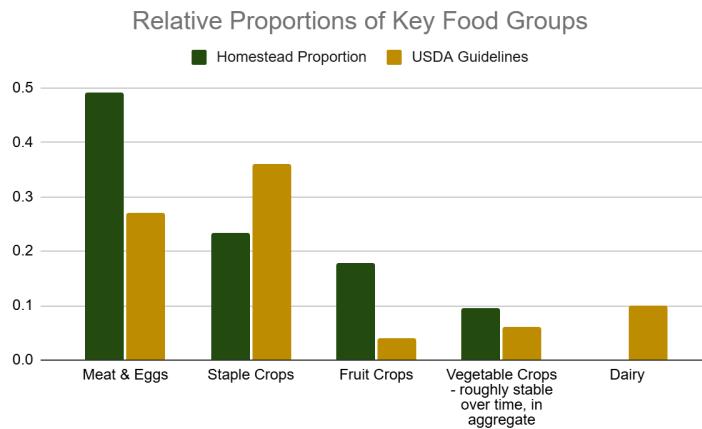
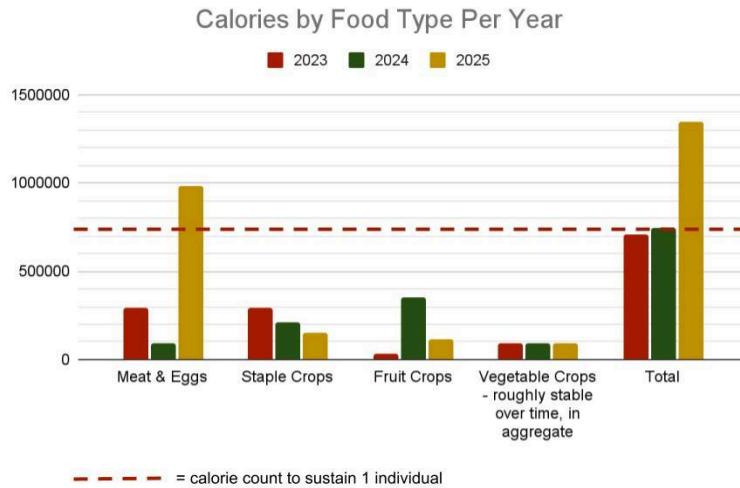
Fruiting Shrubs								
Swale #		Western Sand Cherry	Service-berry	Golden Currant	Three Leaf Sumac	Wild Plum	Aronia	Choke-cherry
1	Approx # Planted**	5	58	55	100	5	3	5
	Total Tallied	2	2	15	34	9	1	3
	Survival Rate	40%	3%	27%	34%	180%	33%	60%
2	Approx # Planted**	17	29	17	0	20	10	21
	Total Tallied	2	3	7	0	10	5	16
	Survival Rate	12%	10%	41%	--	50%	50%	76%
Avg Survival Rate		26%	7%	34%	34%	115%	42%	68%

Cultivating a Complete Diet: How Are We Doing?

One of our key focal points is cultivating a complete human diet—the balance of livestock, tree crops, grains, nuts, vegetables, and medicines that could actually meaningfully sustain humans in this bioregion. For us, this is an extremely important question to answer, because at the heart of our work is creating self-sustaining systems. What is the ratio of livestock to cropland that supports healthy nutrient cycling? Can we truly shift our calorie and dietary requirements—and customs—to perennial seed and tree crops that anchor the ecosystem? Can we truly “feed the world” as effectively—or more effectively—using ecological systems rather than conventional agriculture. If we grow some foods regeneratively, but import others from farms that are destroying ecosystems, that is not a real solution.

We focus our data collection on this matter on the calorie content of food. While the actual nutritional requirements of humans are vastly more nuanced, this gives us a picture of our basic ability to sustain the energy needs of humans. When people talk about big conventional agriculture “feeding the world,” they typically are also simplifying in this way. Because the heart of our ecological and educational practice relies on diversity, we are making an assumption that amidst everything we grow, we are achieving a basic nutrient profile that supports (or exceeds) the typical American diet.

This year, we have largely confined our data analysis to food produced at the Niwot Homestead, because this represents the circular system to which we aspire. (We were grateful to receive high yields of meat and dairy from Wild View Farm, but in its current state of regeneration, this is also a high input system).



We currently cultivate a total of:

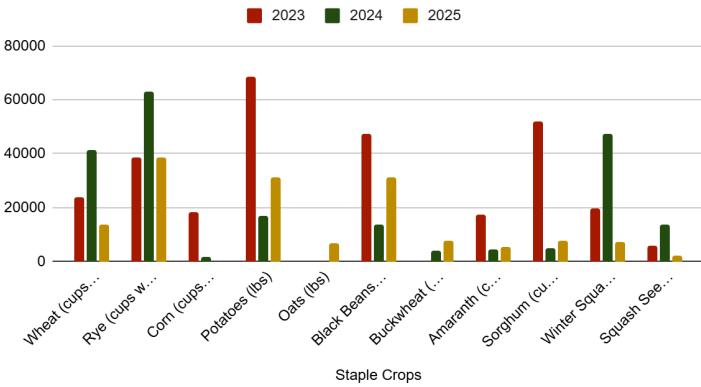
- 76 perennial plant species for food and medicine
- 10 staple crops
- 28 annual vegetables and herbs
- 4 livestock species

Percentage of a Complete Diet from the Niwot Homestead (by calories)

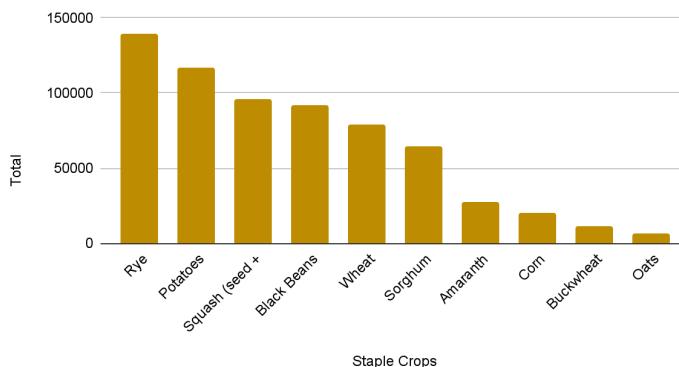
2023	97%
2024	102%
2025	184%

Key Interpretations

- It is noteworthy that although the relative value of each food group varies over time—some years are good fruit years, others have higher yields of meat—the overall baseline can still be achieved. If we relied entirely on any one system, this likely would not be true; **diversity is resilience**.
- The very high meat and egg count from this year is owing largely to the harvest of two very large pigs. **We are continually reminded—and grateful—for the pivotal role pigs play in our systems.** They have a unique capacity to transform “waste” foods into high quality meat, protect our birds, provide disturbance for our annual systems, and give us fat in a very lean environment. It is clear why pigs have long been symbols of wealth and prosperity.
- The USDA guidelines above can be useful in one of two ways.
 - If we assume that their guidelines are universally accurate, they provide us with aspirational goals for how we might adjust our systems to be more in line with the stated nutritional needs of humans.
 - Alternatively, we acknowledge that human diets have varied significantly by bioregion through time, and currently have a much higher proportion of staple grain crops than the diets of our ancestors. We explore how balanced bioregional diets—which so far appear to be higher in meat and fruit and lower in staple grains—differ from the ones we are habituated to eating, and find new ways of eating that meet our ecological reality.

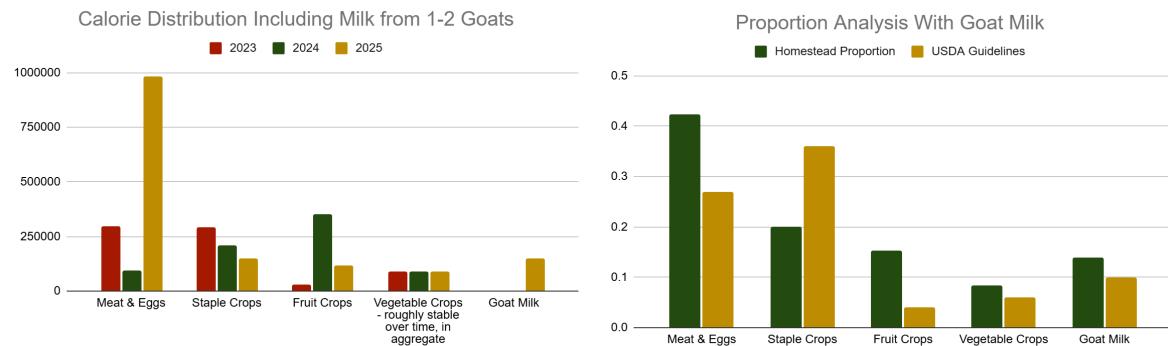


Staple Crop Analysis


We also chose to do an analysis of the calorie yields of our annual staple crops over time, to help us decide which systems are worth keeping, scaling or adjusting. In most cases, the area planted to each crop is similar—they rotate through fields of roughly the same size each year. The expectations to that are amaranth (grown in only $\frac{1}{4}$ - $\frac{1}{3}$ of the area of the other crops) and oats (which we grew experimentally in only about $\frac{1}{4}$ of a field this year). So keep in mind that the yields from those crops are artificially low.

Overview: Productivity of Staple Crops by Calories

Overall Productivity of Staple Crops By Type 2023-2025



Key Interpretations

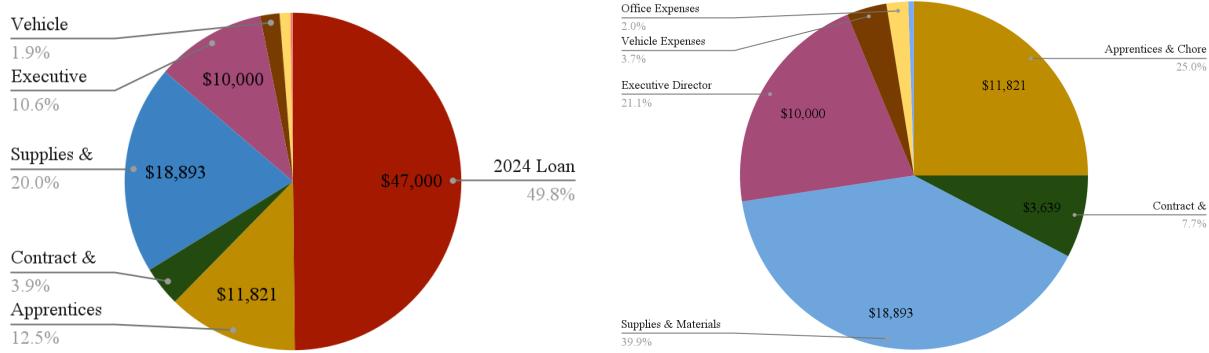
- Once again, the value of diversity is a key take away. In most cases, the yields of crops vary significantly from year to year-based on seasonal weather variations, location, management, creatures who come to share the harvest—while the net yields remain far more consistent.
- In assessing which of these crops has the greatest value, it is **interesting to compare consistency versus potential**. The three highest yielding crops ever were potatoes, rye, and sorghum. But sorghum overall ranks quite low on 3-year productivity, largely because it has a very long growing season, and has not always finished maturing before the first frost. Potatoes are also very variable. Rye, on the other hand, has much more similar yields across the years—we can rely on it for a predictable yield. One way this might guide our management is to explore the conditions that allowed very high yields of crops like sorghum and potatoes and prioritize planting them to match.
- Corn is anecdotally one of the highest yielding crops to grow on a small scale, but in our context, even with electric fencing, it has been virtually impossible to avoid sharing 90%+ of the yield with creatures including raccoons, squirrels, and bears, and so many not be worth continuing to grow.
- Amaranth has always yielded low in terms of volume (consider that we also plant very little of it), but its calorie count relative to volume is higher than any other crop. It may therefore be worth continuing to grow it, and possibly growing more than we have in the past.

An Exploration of Goat Milk

Although we kept our dairy goats at Wild View Farm, for the sake of exploration, we did a quick analysis of the relative caloric value of milk from 1-2 goats in our diet picture. This was a relevant question for us to ask: 1) Because the value of milk to make culturally familiar dishes is high, 2) to understand how many milking goats are needed to contribute meaningfully to a complete diet, and 3) To explore the relative value of dairy goats versus meat livestock to raise on pasture in future renditions of the project. It is worth noting that we were milking in a minimally productive way and intensive milking would likely yield at least twice this much.

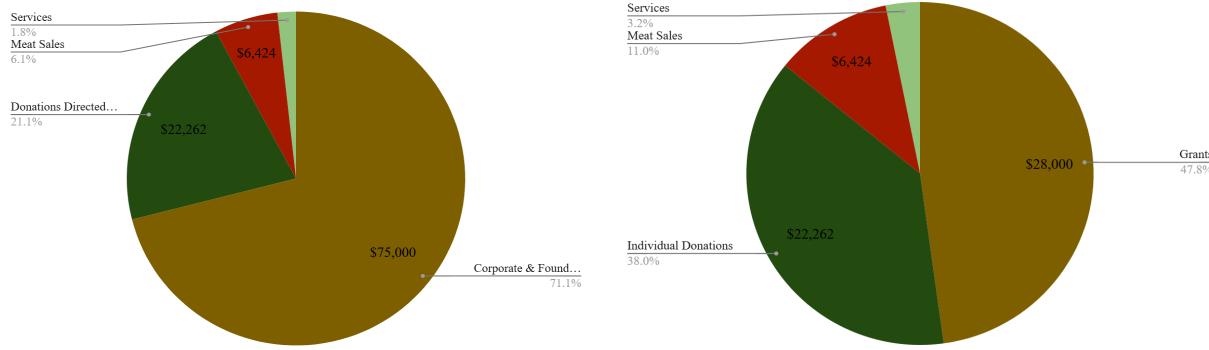
Key Interpretations

- These visuals help us see that, approximately, the milk from one goat produces enough milk to more or less meet the dairy needs of one human (in the high-dairy context of modern American diets). The milk from one goat also roughly equals the calorie output from both our staple crop and forest garden systems. Assuming a middle-of-the-road estimate that it takes 1 acre of forage to sustain one goat year round, this is a low calorie output relative to area UNLESS it can be accomplished within other yielding systems (silvopasture, for example) OR there is not capacity or water to manage pasture except through grazing.
- We are not currently equipped to answer this question, because our farm sites have no established pasture and are in a state of regeneration, but it would be interesting to explore the relative yield of meat (ie; cattle, sheep) to dairy afforded by grazing the same acreage.


Key Reflections & Curiosities From Our Research

- Through the various data points shown above and anecdotally, it appears the staple crop fields are degenerating rather than regenerating—loosing organic matter faster than they are gaining it, compacting, and consequently yielding lower. Although sheet mulching and subsequent tilling with pigs lead to an initial flush of health and productivity, our suspicion is that the **frequency and intensity of our disturbance regime (pigs, chickens, broadforking, seeding) is too high in the staple crop fields.**
- The compost system we are using for our vegetable garden is creating soils more analogous to those of a temperate or coniferous forest—high organic matter, high fungal life, slow nutrient mobilization. While this is a helpful trend in terms of typical successional pathways, **if we want to continue growing vegetables in this space, we need to modify the way we manage our compost system to include more nitrogen and less woody materials.**
- No one of our systems has yet arrived at a point of circular fertility. Although we make a dedicated effort to import fertility from places where it is otherwise a waste stream (food scraps, wood chips, horse manure), we are nevertheless in a cycle of continually adding outside nutrients to the system to upkeep it. Our true vision would be the creation of systems that cycle, maintain, and build their own fertility from the plants and animals inhabiting the land. The only system where it is currently feasible to imagine this (because it is perennial) is the forest garden, but we have continued to add mulch each year, disguising whether this is really happening or not.
- All of the above observations hone back to a key question that is at the very heart of our agricultural crisis: Is it possible to regeneratively steward farm systems that are perpetually annual? This is a pattern that nature never follows. **We are curious to explore more deeply the frequency and type of disturbance regimes that affect our model ecosystems (cottonwood forests, cottonwood savannahs, prairies) to explore how we can more fully mimic them, likely keeping a smaller proportion of our operation in annual crops at any one time and leaning more into perennials.**
- Regardless of the relative proportion of crops, **we have consistently met or exceeded the 1-person per acre baseline** of food production which we feel, for this bioregion, is quite productive.
- It appears to be roughly a full time job (40 hours per week) to feed one person in this kind of high-diversity, intensive management, annual reliant, ecological system. This is unsurprising, given that through most of human history, and throughout the animal kingdom, the bulk of every organism's waking hours are dedicated to staying fed. But it poses some interesting philosophical questions in a time when people work full time jobs that have nothing to do with food cultivation.
 - **Can an increasing shift to perennial and self-sustaining systems lower this number enough to make subsistence feasible on top of part or full time work?** For example, many of our hunter-gatherer ancestors worked actively less than 20 hours per week, with the emphasis of work shifting from planting, cultivation, weeding, etc... back to harvest and food preparation. If people could dedicate 2-3 hours per day to tending their ecosystem—and it fulfilled their needs for exercise, community, and nature time—could this ever present a realistic alternative to the for-profit food economy?
 - Similarly, **can increased scale of operation using similar methods lower the number of work hours relative to the output?** Probably not to the same extent as perennial systems, but likely to some degree.
 - **Is it ethical or in line with our core vision to harness the labors of many individuals to feed only a small portion of them a complete diet?** Is it productive to say, as we have been doing, use the labor of 15 people to essentially feed 1 (even though the food is shared)? Are the educational opportunities we offer valid in this context?
 - It may be that the best we can do in the context of our modern society is provide a space that teaches people how they could be self-sufficient (or community-sufficient) if they had enough time and energy to do so, while giving people a taste of that experience, even if we effectively feed people (at our current rate) 1/15 of their whole diet through the project.

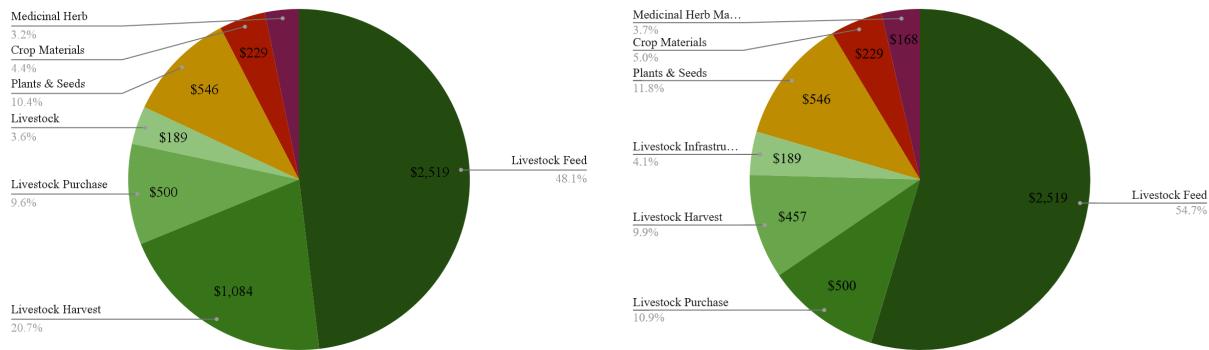
Financial Analysis


Overall Organizational Expenses

The first chart includes the repayment of 2024 expenses that occurred upon receiving funding from a grant that had been pending the award of non-profit status. The second chart excludes this expense to give a more realistic breakdown of 2024 operating costs. The contract and professional fee category includes payments to apprentices, livestock processing fees, and payments to other contractors such as United Ecology for seeding the fields at the Tuck Property.

Overall Revenues

The following charts show the relative proportion of income streams for 2024. Once again, the first chart includes the entirety of the pledged grant award, while the second deducts the portion of the grant award dedicated to repaying 2024 costs. In this case, the individual donations category comprises Regenerating Memberships as well as one \$15,000 donation.


Discussion

More or less, the above distributions represent the expected expenses for this year. The notable exception is that we anticipated fundraising and developing many more revenue streams throughout the season, to both bolster the ED salary and provide starting funding for 2026; the announcement of the sale of the Niwot Homestead in June made it very challenging to do this as planned, without a clear operating location or programming on the table for 2026. As a result, we are closing out the year with only about \$5000 in the bank account, not an ideal circumstance, but one we expect to address and rebuild as soon as our next steps become clear.

Materials Costs By Location

The Niwot Homestead

The following pie chart shows a breakdown of the materials & contractor costs for the Niwot Homestead. This chart excludes more general costs such as events and supplemental costs of feeding the volunteer community, which are considered more relevant to the organization as a whole. As you can see, associated livestock costs (shades of green) are by far the highest expense. That said, livestock-both their fertility and food offerings-also represent the highest yield in our system, so this may be appropriate. It should be noted that supplementary livestock feed costs (mostly chicken feed) are higher than usual, partly because a high proportion of the waste streams we collect for food was going to the livestock at Wild View Farm. The second pie chart accounts for the income from selling excess pork by deducting this from the livestock processing fee, to demonstrate our **net operating budget of \$4608 for the Niwot Homestead**.

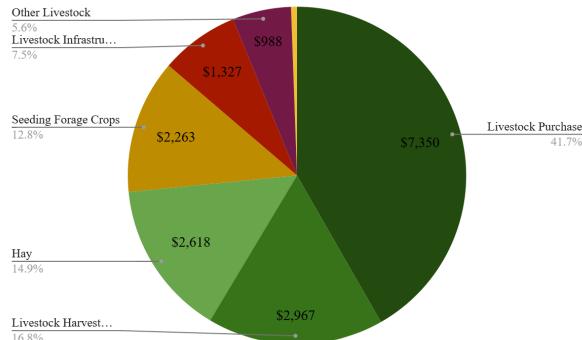
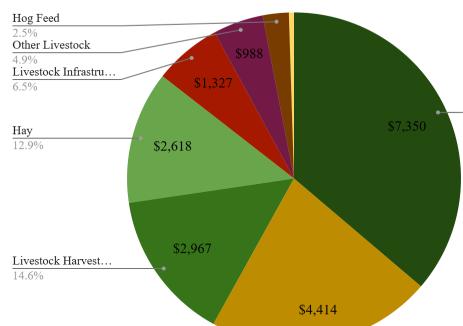
Interpretation & Discussion

According to data from the Bureau of Economic Analysis, the average cost to feed one person in Colorado (excluding restaurants) is \$4922. This means that **the actual material cost (excluding labor) of food from the Niwot Homestead is similar to the costs people would otherwise pay to feed themselves**. Assuming a regenerative and low-cost labor model exists, this is a hopeful illustration of the possibility of feeding oneself economically from this kind of system while likely enjoying much more diverse and high quality food than the average American.

The part of the above equation that is more ambiguous is the labor cost to support the above activities. Currently, the labor breakdown for the Homestead is as follows:

Weekly paid staff hours

1. 1 hour of daily chores = 7 hours per week = 365 hours/year
2. Other farm maintenance = 12 hours per week Apr-Nov (34 weeks) = 408 hours
3. Total of 773 hours of total work paid at \$20/hour is \$15,460 annually
4. At times, before the formation of the non-profit, this has also been volunteer time



Volunteer hours

1. 1530 hours of annual volunteer participation (currently free)
2. Paid at \$20/hour, that would equal \$30,600

At market rate, the total labor cost to run the homestead is 44 hours per week, which would total \$46,060 at a pay rate of \$20/hour. Essentially, this equates to one full time job. This analysis reaffirms our earlier observation that it is roughly a full time job to stay fed, when relying on hand-tended systems that are still heavily reliant on annual crops. That it is possible to buy an equal amount of food for a mere \$4900 from the food industry demonstrates just how much human time is saved by conventional, mechanized agriculture; and yet, this cost is paid over and over again by the earth and ultimately our society. But actually paying people to labor in this kind of system is a clearly a preposterous financial solution to tending food. We are once again eager to explore scaled and more heavily perennialized versions of this food system, aligned with community power, to arrive at a more reasonable outcome.

Wild View Farm

The following pie charts show a breakdown of the operational costs of Wild View Farm. The first chart shows the actual costs. Because the owners reimbursed us for livestock feed and for a proportion of the cost of seeding forage crops, the second chart shows the total net expenditures for us, including these deductions.

Revenues

Meat sales from Wild View Farm totalled \$945 for pork, \$4714 for beef, and \$300 selling this year's baby goats, totalling \$5959 in revenue. **That brings the net operating cost, including sales and reimbursements from the owners, to \$11,654.**

Discussion

The mission and focus of our organization has become clearer with passing time. One intention in partnership with Wild View Farm was to develop our own understanding of how to regenerate deeply degraded land. While we have surely learned a great deal about that (and management of cattle and goats), the cost to undertake this experimentation over the long run is very high. It has not been possible to grant-fund this to the extent that we had hoped. It has also become clearer to us that our more focused vision is to create space for people to connect with their food and ecology, rather than just practicing ecological land management ourselves. In light of all of this, we have decided not to continue partnership with Wild View Farm, to free up energy and resources for operating locations that allow us to better serve our mission.

Final Financial Notes

Two key operating costs that are detached from either operating location include:

- **Supplementary Food Costs: \$1826.75**
 - These costs include supplementary ingredients for food preservation, cooking for volunteer and fellowship meals, and herbal medicine supplies. This number could be considerably lower by cooking simpler meals and more strictly adhering to seasonally available, farm-sourced ingredients, which is our intention for future seasons.
- **Event Costs: \$766.58**
 - These include costs associated with our spring and fall brunches and May tree planting event. In all cases individual donations at events surpassed costs.

Looking Back & Looking Forward

As most in our community know, with the impending sale of the Niwot Homestead, we sit in a place of transition and growth. Our clarity of purpose and momentum have never been stronger. While many exciting opportunities are taking shape for the future, opportunities that will allow us to experiment on larger acreages, engage more people, and help incubate similar projects elsewhere, we want to first take a moment to look back in gratitude.

Thank you to all of the volunteers, supporters, and team members who have helped transform the Niwot Homestead from a backyard into an ecosystem and a community, most especially Niwot Homestead property owners Rod Pullman and Barb Greweling.

Leadership Team: Amy Scanes-Wolfe (Executive Director), Albert Wavering (Treasurer), Kiersten Clingersmith (Secretary)

Board Members: Tommi Wolfe (chair), Nick DiDomenico, Keats Dormont

Working Team: Gavin Goodsell & Katie Johnson

Wild View Farm Property Owners: Lucy & Adrian Tuck

Financial Contributors: Tigger & Nick Park, Deb Fowler, Sarah Jolly, Tommi Wolfe, Julie Naster, Maggie Sawyers, Claudia Hartke, Rio Nolund, and Gwen & Jim Lazzeri

Core Volunteer & Fellowship Team: Virginia Arnette, Kaila Avent, Jessica Berta-Thompson, Kiersten Clingersmith, Quinn Farrell, Maria Fernanda Gomez, Anna Flick, Claudia Hartke, Karall Heimann, Carlee Marincic, Kiah McCarville, Laura O'Connor, Nadav Orion Peer, Shannon Koleen, Kiah McCarville, Rio Nolund, Sage Polak, Rachel Posner, Paula Preda, Maggie Sawyers, Julie Naster, John Reed, Albert Wavering, Carol Wiley, Evan Zbokien & so many more periodic supporters and attendees.

Looking Back: Successful Patterns from the Niwot Homestead

- **Creating a structure for many people to collaboratively tend a complex ecosystem,** rather than individuals each tending their own small plot of annual vegetables, like traditional community gardens, creates vastly more cohesion, educational opportunity, and diverse yield.
- **Accessibility.** The ability for people to contribute meaningfully to the project without having to be there every morning for chores or have their own land enables many more people to be involved in homesteading.
- **Community Power.** The actual amount of work that can be accomplished in a short time, while having a lot of fun, by relying on the power of community, is incredibly empowering.
- **Involving core team members in farm decision making and planning** has built shared investment and context.
- **Providing a complete experience** that takes participants from planning to seeding to harvest to preservation to table-crafting meals entirely from the bounty of the land-creates a sense of deeper understanding and appreciation
- **Diverse farm systems have provided rich opportunities for engagement**-whether it is planting vegetables, fermenting peppers, threshing and winnowing grain, trimming chicken wings, or processing herbs into tea blends, there is always something new to try and learn

Looking Forward: Intentions for the Next Chapter of Our Project

- **Broader Community.** Maintaining the intimacy of small groups working together while opening opportunities to serve many more people both as regular participants and for one-off events, for greater impact and more robust revenue streams.
- **Open Property.** Cultivating a more public-facing property where people feel free to come and go outside of structured times, with space to observe and feel at home.
- **Agroecological Innovation.** Exploring and developing agro-ecosystems at larger scale that lean more heavily into innovative perennial cropping strategies while also producing more food for less labor.
- **Incubation.** Creating deeper, more involved educational experiences for those keen to start their own projects and helping develop and support a network of affiliated projects.